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The gestalt of this thesis can be seen in Theorem 4.5.2 and Theorem 4.5.4

which give formulas for the density of rational primes that satisfy a certain spin

relation. We use the spin of prime ideals, a special case of class field theory,

and the infrastructure developed throughout this thesis in order to prove under

reasonable assumptions, the surprising formula in conditional Theorem 5.4.3

giving the expected density of rational primes that exhibit a prescribed ramified

factorization in a number field depending on the prime in question. This density

is strictly between 0 and 1.
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Figure 1: “Mirror”
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PROLOGUE

Dirichlet’s Infinite Song

In the words of Leonard Cohen, “it goes like this the 4th the 5th”. Leonard was

referring to the 4th and 5th notes in the seven-note scale. For example, in the key

of C major, we have the seven-note scale, [C,D,E,F,G,A,B] and while Leonard

Cohen sings these words, he plays the chords C, F, then G on the guitar which

is the 1st, the 4th, and then the 5th note in the C major 7-note scale.

What is the 8th? It’s just C again. What about the 9th? That would be D. The

pattern continues so that for example the 18th would be F because 18 = 7× 2 + 4

This is the idea behind modular arithmetic. Here, we are working modulo 7.

We say that 8 is congruent to 1 mod 7 and 9 is congruent to 2 mod 7 etc...

C D E F G A B

1 2∗ 3∗ 4 5∗ 6 7∗

8 9 10 11∗ 12 13∗ 14

15 16 17∗ 18 19∗ 20 21

Imagine an infinitely long song such that the sequence of notes is exactly the

sequence of prime numbers modulo p for some prime number p. Let’s use the

C major 7-note scale (so p = 7).

The first note in the song corresponds to the first prime number, 2 so the first

note is a D. The next note corresponds to the next prime number 3 so the next

1



Figure 2: The first four measures of Dirichlet’s Infinite Song

note is E. The next integer 4 is not prime because 4 = 2 × 2 so the next note

corresponds to the next prime which is 5 or G. Then comes B for 7. The next

prime is 11 which is F since 11 is 4 more than a multiple of 7 etc...

The note B will only be played once throughout the infinitely long song

because 7 is the only prime divisible by 7, but how often are the other notes

played?

Dirichlet’s theorem on primes in arithmetic progression, later generalized

by Chebotarev, tells us that except for B, each note is played with “probability”

1
6 . There are 6 notes remaining so this means the notes in Dirichlet’s Infinite

Song are equidistributed. In other words, Dirichlet’s theorem gives us a way to

partition the primes so that the probability that an arbitrary prime is in the first

class is equal to the probability that the prime is in the next class etc...

In Theorems 4.5.2 and 4.5.4, we will see an entirely new way to partition

the primes in an asymptotically predictably distributed fashion coming from a

Hilbert symbol relation given in [6] between the spins of a prime ideal.

2



Background and References

Throughout this thesis, we assume knowledge of algebraic number theory at the

level of an introductory graduate course . For references regarding background,

I recommend consulting the following sources for the following audiences.

• Number Fields by Marcus [8] is a great place to start to learn some alge-

braic number theory. I’m a fan of Algebraic Number Theory by Milne [10]

which is available for free online. I also highly recommend Keith Conrad’s

expository notes [5] which include a variety of topics in algebraic number

theory.

• For readers who are familiar with algebraic number theory, but have not

had exposure to class field theory, I recommend consulting Class Field The-

ory by Artin and Tate [1], Class Field Theory by Childress [4], or Class Field

Theory by Milne [11] (also free online).

• Algebraic Number Theory by Neukirch [13] is a good resource for those read-

ers who have (at least some) familiarity with class field theory already and

are primarily looking for a reference. Note that Neukirch does everything

in the narrow setting, meaning that all infinite places are included in the

conductors. This thesis also takes place in the narrow setting.

Chapter 1 is intended as a reference and to establish common background

and notation. It also serves as an expository tour through class field theory for

readers with background in algebraic number theory.

Unless explicitly defined otherwise, all ray class groups/fields in this thesis

are assumed to be narrow, meaning that all infinite places of the base field di-
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vide the modulus/conductor. We refer to a narrow modulus by it’s finite part,

an ideal in the ring of integers of the base field. Chapter 2 gives an exposition

of a particular case of class field theory.

In Chapter 3, we will discuss the spin of prime ideals and known results

regarding dependence and distribution of spin. The spin of prime ideals was

originally defined in [6] by Friedlander, Iwaniec, Mazur, and Rubin. Though a

simple algebraic condition, the spin of prime ideals provides a powerful, mod-

ern, and novel approach to studying prime numbers.

Chapter 4 is original work; it ties together the previous Chapters into The-

orems 4.5.2 and 4.5.4 which give formulas for the density of primes satisfying

a spin relation. The densities in these Theorems will be applied in Chapter 5

to conditional Theorem 5.4.3, which gives a formula for the density of rational

primes p that split as completely as possible in a number field depending on p

given the necessary ramification. In particular, the formula in conditional The-

orem 5.4.3 gives a density of ramified primes that is strictly between 0 and 1.

4



CHAPTER 1

CLASS FIELD THEORY EXPOSITION

In Chapter 1, we give an expository tour through class

field theory following [11] and [13]. The purpose of

Chapter 1 is to establish a common language. We re-

strict ourselves to the narrow setting; in a narrow ray

class field, ramification is allowed at all infinite places.

We assume K to be a totally real number field through-

out this thesis and we will impose further restrictions

as we procede.

1.1 Ray Class Groups

Let K be a totally real number field (i.e. every embedding of K into C lays in R).

A modulus for K is defined as a formal product

m :=
∏
p

p
ap

taken as p varies over all finite and infinite places of K such that only finitely

many ap ∈ Z≥0 are non-zero and for p an infinite place, ap ∈ {0, 1}.

Let m :=
∏
p p

ap be a modulus. When p is infinite, we let σp : K ↪→ R denote

the corresponding embedding. We say that a place p divides the modulus m

whenever ap > 0. For α ∈ K×, we write

α ≡∗ 1 mod m

whenever ordp(α − 1) ≥ ap for all finite p dividing m and σp(α) > 0 for all infinite

p dividing m.

5



We say a modulus is narrow when ap = 1 for all infinite p of K. We say a

modulus is wide when ap = 0 for all infinite p. For our purposes, it will usually

suffice to consider only the narrow case. When it is clear that we are in the

narrow case, we refer to a modulus by its finite part m0 :=
∏
p p

ap where now

the product is taken as p varies over all finite places of K and only finitely many

ap ∈ Z≥0 are non-zero. Note that m0 is then easily identified with an honest ideal

of OK , the ring of integers of K. Given α ∈ K , we write α � 0 to mean that α is

totally positive (i.e. σ(α) > 0 for all embeddings σ : K ↪→ R). In the case when

m is narrow, α ≡∗ 1 mod m implies α � 0.

We now define narrow ray class groups. Let m be a narrow modulus with

finite part m0. Let JmK denote the group of fractional ideals of K co-prime to

m0, the finite part of m. Let PmK denote the subgroup formed by principal ideals

which have a generator α ∈ K× such that α ≡∗ 1 mod m. Note that we are abusing

language slightly. A fractional ideal in JmK can be written as a
b

for some integral

ideals a, b ⊆ OK . When we say that α× is a generator for a
b
, we mean that α = a

b

where a, b ∈ OK are honest generators of a and b respectively.

Definition 1.1.1. Define the narrow ray class group over K of conductor m to be

nClmK := JmK /P
m
K .

Example 1.1.2. For example in the case K = Q, taking m to be the narrow modulus

with finite part m0 = (m) for m > 0,

nClmQ � (Z/m)× .

Proposition 1.1.3. Every element of nClmK is represented by an integral ideal a, and

two integral ideals a and b represent the same element of nClmK if and only if there exist

6



nonzero a, b ∈ OK such that aa = bb and

a ≡ b ≡ 1 mod m0,

ab � 0.

Proof. V.1.6[11]. �

For a totally real number field K with ring of integers OK and a narrow mod-

ulus mwith finite part m0, define

Km := {α ∈ K× : ordp(α) = 0 for all p|m0},

Km,1 := {α ∈ K× : ordp(α − 1) ≥ ap for all p|m0 and α � 0},

U := O×K (the group of units),

Um,1 := Km,1 ∩ U.

Let CK denote the quotient of the group of fractional ideals of K by the subgroup

of principal ideals. That is, CK is the wide ray class group of conductor 1 over K

which is the usual class group of K.

Theorem 1.1.4. Let K be a totally real number field of degree n := [K : Q]. For every

narrow modulus m of K, there is an exact sequence

1→ U/Um,1 → Km/Km,1 → nClmK → C → 1

and a canonical isomorphism

Km/Km,1 � (Z/2)n
× (OK/m0)× .

Therefore, nClmK is a finite group of order

hm =
2nh Norm(m0)

∏
p|m0

(
1 − 1

Norm(p)

)
[U : Um,1]

where h = #CK is the class number of K.

7



Proof. V.1.7[11]. �

1.2 The Frobenius

Let K be a number field and let L be a finite abelian1 Galois extension of K. Let

Gal(L/K) denote the Galois group of the extension. Let p be a prime of K and

let P be a prime of L laying above p. Recall OK denotes the ring of integers of K

and similarly, let OL denote the ring of integers of L.

Definition 1.2.1. The decomposition group of P for the extension L/K is defined as

D(P) := {τ ∈ Gal(L/K) : Pτ = P}

and the inertia group of P for the extension L/K is defined as

E(P) := {τ ∈ Gal(L/K) : ατ ≡ α mod P ∀α ∈ OL}.

For τ ∈ E(P), consider α ∈ OL such that α ≡ 0 mod P to see that τ ∈ D(P)

showing that E(P) is a subgroup of D(P).

Definition 1.2.2. Define the ramification index of P for the extension L/K to be the

size of the inertia group,

eL/K(P) := #E(P).

Define the inertia degree of P for the extension L/K to be the index of the inertia

group in the decomposition group,

fL/K(P) := (D(P) : E(P)).
1See V.1[11] for the non-abelian case.

8



In fact, fL/K(P) = # Gal((OL/P)/(OK/p)) because there is an isomorphism

dP : D(P)/E(P)
∼
−→ Gal ((OL/P)/(OK/p))

induced by the natural map as explained in Chapter 4 of [8].

The Galois group of the residue fields Gal ((OL/P)/(OK/p)) is cyclic with

a canonical generator ϕ which maps x ∈ OL/P to xq where q := #OK/p =

NormK/Q(p). (Letting p be the rational prime such that p lies above p, then

q = p fK/Q(p)).

Definition 1.2.3. The Frobenius element of Gal(L/K) at P, (a prime of L unramified

in L/K) is defined as

FrobL/K(P) := d−1
P (ϕ).

Since we are in the case in which Gal(L/K) is abelian, by property 1.9 in

Chapter V of [11], FrobL/K(P1) = FrobL/K(P2) for any two primes P1 and P2 of L

laying above a common prime of K. Therefore, we can unambiguously use the

notation

FrobL/K(p) := FrobL/K(P)

where P is any prime of L laying above p, a prime of K.

1.3 The Artin Map and Ray Class Fields

As in Section 1.1, we let JmK denote the group of fractional ideals of K co-prime

to m0, the finite part of the modulus m of K and we let PmK denote the subgroup

of JmK generated by prime ideals of OK which have a totally positive generator α

such that α ≡∗ 1 mod m.

9



Let L/K be a finite abelian Galois extension. Assume that all primes which

ramify in L/K divide the modulus m of K. Then the (global) Artin map is the

homomorphism

ArtL/K : JmK → Gal(L/K)

induced by the map which sends primes p of K (unramified in L/K) to FrobL/K(p).

Theorem 1.3.1. Let L/K be a finite abelian Galois extension. Let m be a modulus of K

such that if p ramifies in L/K then p|m. Then the Artin map

ArtL/K : JmK → Gal(L/K)

is a surjective homomorphism which factors through nClmK .

Proof. V.3.5[11]. �

Definition 1.3.2. Given a finite abelian extension L/K, define the conductor of L/K

to be the greatest common divisor of all moduli m of K such that the Artin map factors

through nClmK .

Another way of saying that ArtL/K factors through nClmK is that defining HL :=

ker(ArtL/K), we have

PmK ⊆ HL ⊆ JmK .

Such a subgroup of JmK is called a congruence subgroup modulo m.

Theorem 1.3.3. For every congruence subgroup H modulo m, there exists a finite

abelian extension L/K such that H = ker(ArtL/K).

Proof. V.3.6 [11]. �

10



In particular, taking H := PmK , Theorem 1.3.3 shows the existence of the nar-

row ray class field over K of conductor m.

Definition 1.3.4. Let m be a narrow modulus for K. Then the narrow ray class field

over K of conductor m is the finite abelian extension nRmK of K such that the Artin map

induces an isomorphism

ArtnRm /K : nClmK
∼
−→ Gal(nRmK/K).

Corollary 1.3.5. Fixing a modulus m of K, there is a bijection from the set of abelian

extensions of K contained in nRmK to the set of subgroups of nClmK given by the map

L 7→ HL.

where HL := ker(ArtL/K). Furthermore,

L1 ⊆ L2 ⇐⇒ HL1 ⊇ HL2

HL1L2 = HL1 ∩ HL2

HL1∩L2 = HL1 HL2 .

Proof. V.3.7[11]. �

1.4 Dirichlet’s Density Theorem

Definition 1.4.1. Let S be a set of primes and let R ⊆ S . The density of primes p ∈ S

which lay in R is defined as

d(R|S ) := lim
N→∞

#RN

#S N

where S N and RN denote the set of primes in S and R respectively of norm less than

N ∈ Z+.

11



For a finite abelian extension L/K and an element σ ∈ Gal(L/K), we define

RayL|K(σ) to be the the set of odd2 primes of K which map to σ via the Artin

map. That is, letting P2`
K denote the set of primes of K co-prime to 2` where ` is

the conductor of K,

RayL|K(σ) := {p ∈P2`
K : ArtL|K(p) = σ}.

We now state Dirichlet/Chebotarev’s Theorem for finite abelian extensions.

In this thesis, we will use the version of Chebotarev’s Theorem for cyclic number

fields using natural density.

Theorem 1.4.2 (Dirichlet-Chebotarev). Let L|K be a finite abelian extension. Then

for every σ ∈ Gal(L/K), the set RayL|K(σ) has a density and it is given by

d
(
RayL|K(σ)|P2l

K

)
=

1
# Gal(L/K)

.

Proof. [14] provides a discussion of various forms of Chebotarev’s Theorem

with references to various proofs. Most treatments of this Theorem use Dirich-

let density for ease, e.g. Theorem 13.4 in Chapter VII of [13] (note that we as-

sume L/K to be abelian). As stated in [7], due to the Wiener-Ikehara tauberian

Theorem, extending the proof to natural density requires a proof of the non-

vanishing of L-functions on the line Re(s) = 1 (as opposed to only at s = 1+ for

the Dirichlet density version). �

2odd meaning co-prime to 2
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CHAPTER 2

THE COINCIDENCE OF NARROW AND WIDE

At the foundation of this thesis lays the study of to-

tally real number fields that satisfy an elegant class

field theoretic coincidence. While computing class

groups is difficult in general, this class field theoretic

coincidence is easy to test for computationally and

when this coincidence occurs, it gives us the tools to

prove results that are more powerful than what we

could prove otherwise.

2.1 A Unique Quadratic Subextension of Ray Class Fields

Let K be a totally real number field with ring of integers OK . Let

UT := {u ∈ O×K : u � 0}

denote the group of totally positive units of K and let U2:= (O×K)2 denote the

group of square units of K. Note that in general,

U2 ⊆ UT .

Our first lemma asserts that the subgroups above coincide exactly when the

narrow and wide Hilbert class fields of K coincide.

Lemma 2.1.1. Let K be a totally real number field. Then UT = U2 in K if and only if

the narrow and wide Hilbert class groups of K coincide.

Proof. Let n := [K : Q]. Since K is totally real, U � Z/2 × Zn−1 by Dirichlet’s Unit

Theorem so U/U2 � (Z/2)n.

13



Let m∞ denote the narrow modulus with finite part 1. That is, m∞ is the

product of all infinite places. From Theorem 1.1.4, since Um∞,1 = UT , we have the

following exact sequence

1→ U/UT → Km/Km∞,1 → nClm∞K → CK → 1

and since m0 = 1, there is a canonical isomorphism Km/Km∞,1 � (Z/2)n. This

induces an exact sequence

1→ (Z/2)n/(U/UT )→ nClm∞K → CK → 1

which shows that U/UT � (Z/2)n if and only if nClm∞K = CK . Therefore U/UT �

U/U2 if and only if nClm∞K = CK . Since U2 ⊆ UT , we have proven the desired

result.

�

Remark 2.1.2. Note that by the definitions of narrow and wide Hilbert class groups,

these two groups coincide precisely when every principal ideal has a totally positive

generator. Therefore UT = U2 if and only if every principal ideal has a totally positive

generator.

Lemma 2.1.3. Let K be a totally real number field, Galois over Q such that h(K) is odd

and UT =U2. Let p be an odd prime of K. Then the narrow ray class field over K of

conductor p has a unique quadratic subextension.

Proof. We first show that the narrow ray class group over K of conductor p has

even order. We then show the 2-part of the narrow ray class group over K of

conductor p is cyclic.

Letm be the narrow modulus with finite part p. Then by Theorem 1.1.4, since

14



K is totally real,

hm =
2n(p − 1)h
(U : Um,1)

.

where p := NormK/Q(p) and h := h(K) = #CK is the class number of K.

Observe Um,1 ⊆ UT since m is narrow. Then since UT = U2,

(U : Um,1) = (U : UT )(UT : Um,1) = 2n(U2 : Um,1)

=⇒ hm =
(p − 1)h

(U2 : Um,1)
.

Consider the injection
U2

Um,1
↪→

(
OK

p

)×
coming from the exact sequence and canonical isomorphism in Theorem 1.1.4.

The image is contained in
((

OK
p

)×)2
so (U2 : Um,1)| p−1

2 . Then (UT : Um,1)| p−1
2 .

Therefore hm is even.

Next, we show the 2-part of the ray class group over K of conductor m is

cyclic.

Let Lp denote the maximal 2-extension of the ray class field over K of con-

ductor m where p is a prime in K. Suppose Lp/K is not cyclic and consider the

inertia group at p, denoted E. Note that Lp/K is tamely ramified at p since this

is a 2-extension and 2 is prime to p. This implies E is cyclic so E is a proper

subgroup of G = Gal(Lp/K). Then the fixed field of E, denoted LE, is a nontrivial

even extension of K in which p is unramified, but this implies LE is contained in

the ray class field over K of conductor m∞, which is odd by Lemma 2.1.1 since

h(K) is odd so this is a contradiction. �
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2.2 The Primes to The Units

Definition 2.2.1. For n an odd rational prime, define K(n, `) to be the degree n absolute

subfield of the `th cyclotomic field;

∗ n = [K(n, `) : Q] is prime.

∗ The conductor of K(n, `)/Q is `.

Note that K(n, `) automatically satisfies the following properties

∗ K(n, `) is totally real.

∗ K(n, `) is Galois over Q with cyclic Galois group.

When we write K := K(n, `) for arbitrary n and `, then K is also assumed to satisfy the

following conditions;

∗ UT = U2.

∗ The class number of K(n, `), denoted h(K) is odd.

∗ 2 and 5 are inert in K(n, `)/Q.

Lemma 2.2.2. Let K := K(n, `) with odd class number h. Let p be an odd prime of K.

Let ph = (α) where α � 0. Then there exits a unit u ∈ O×K such that uα is a square

element in nRpK and u is uniquely determined modulo squares.

Proof. By Lemma 2.1.3, there exists a unique quadratic subextension of nRp /K.

Let β ∈ OK such that L := K(
√
β) ⊆ nRpK . Let OL denote the ring of integers of L.

Write

βOK = q
r1
1 · · · q

rm
m ,
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the unique factorization of βOK into distinct prime ideals of OK where 0 ≤ m.

Then as elements of OK ,

βh = usr1
1 · · · s

rm
m

where si ∈ OK is a generator of the principal ideal qhi and u is some unit in U = O×K .

Observe that since the class number h = h(K) is odd,

L = K(
√
β) = K(

√
βh) = K

(√
usr1

1 · · · s
rm
m

)
.

If 2|ri then βhOK/q
hri
i is a principal ideal γOK such that L = K(

√
β) = K(

√
γ) with

qi not dividing γOK . Therefore we may assume that βOK is a product of distinct

prime ideals

βOK = q1 · · · qm.

To show that m = 1 and q1 = p, we will show that each qi is ramified in L. Let

q ⊆ OK be a prime ideal dividing βOK such that q2 - βOK .

Write

βOK = qa

where q - a. Then q = q2 + βOK since q and a are coprime ideals of OK . Lifting to

OL, we get

qOL = (q2OL + βOL).

Let I := qOL +
√
βOL. Since qOL ⊆ I and

√
βOL ⊆ I,

q
2OL ⊆ I2

βOL ⊆ I2. Therefore (q2OL + βOL) ⊆ I2. We showed qOL = (q2OL + βOL) so

qOL ⊆ I2.
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The reverse inclusion is also true; I2 ⊆ qOL because an arbitrary element of I has

the form q + b for some q ∈ qOL and b ∈
√
βOL so an arbitrary element of I2 has

the form

(q + b)2 = q2 + 2qb + b2

and q2 + 2qb ∈ qOL and b2 ∈ βOL ⊆ qOL.

Therefore qOL = I2 so q is ramified in L. Since L ⊆ nRpK , we know that p is the

only finite prime that ramifies in L. Therefore 0 ≤ m ≤ 1 since p is the only prime

of K that divides the square-free part of β.

If L = K(
√

u) for a unit u ∈ O×K then L would be a nontrivial even extension of

K unramified at all finite places, but by Lemma 2.1.1, since h(K) is odd, there are

no such extensions of K. Therefore m = 1 and q1 = p. Then letting α be a totally

positive generator of ph, we have

βhOK = αOK =⇒ βh = uα

for some unit u ∈ O×K . Then uα is a square in L by construction of L.

Suppose there are two such units u, v ∈ O×K . That is, suppose uα and vα are

both squares in nRpK . Then by uniqueness in Lemma 2.1.3,

K(
√

uα) = K(
√

vα)

so u ≡ v in U/U2 where U = O×K . �

Let P2
K denote the set of primes of K that are co-prime to 2. The following

map vK is well-defined by Lemma 2.2.2.
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Definition 2.2.3. Let K be a totally real number field of odd class number such that UT

= U2 and 2 is inert in K/Q. Define the map

vK :P2
K →

U�U2

p 7→ up

such that upαp is a square (element) in nRpK where αp ∈ OK is a totally positive generator

of p.

In Lemma 4.2.2, we will see that this map induces a well-defined surjective

homomorphism from the narrow ray class group over K of conductor q,

ϕ : nClqK � Mq

where for q a power of 2,

Mq := (OK/q)×/
(
(OK/q)×

)2
.

This homomorphism allows us to define a map in Theorem 4.4.2 that will allow

us to prove Theorem 4.5.2 and Theorem 4.5.4 giving the density of primes that

satisfy a certain spin relation. First, we discuss the spin of prime ideals.
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CHAPTER 3

THE SPIN OF PRIME IDEALS

In Chapter 3, we give an exposition of known results

regarding the spin of prime ideals. In Chapter 4 we

will give a formula describing the asymptotics of a

spin dependence relation. In Chapter 5, we use this

formula together with results from [6] on the distribu-

tion of spin to prove under reasonable assumptions,

the surprising formula in Theorem 5.4.3 giving the

density of rational primes p that exhibit a prescribed

ramified factorization in a number field depending on

K and p.

3.1 The Spin of Prime Ideals

Recall that we write K := K(n, `) to mean that K is an arbitrary number field

satisfying the following properties listed on page 16.

Definition 3.1.1 ([6]). Let K be a totally real number field which is cyclic over Q of

degree n ≥ 3 such that UT = U2. Let σ ∈ Gal(K/Q) be a generator. Given an odd

principal ideal a, we define the spin of a (with respect to σ) to be

spin(a, σ) =

(
α

aσ

)
where a = (α), α is totally positive, and

(
α
b

)
denotes the quadratic residue symbol in K.

Spin is well-defined; since UT = U2, the choice of totally positive generator α

does not affect the quadratic residue.
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Lemma 11.1 in [6] states that the product

spin(p, σ)spin(p, σ−1)

is a product of Hilbert symbols at places dividing 2. We make this statement

more explicit in Lemma 3.1.2.

For a place v of K, the Hilbert Symbol is defined such that (a, b)v := 1 for

a, b ∈ K co-prime to v if the equation ax2 + by2 = z2 has a solution (x, y, z) ∈ K(v)

where at least one of x, y, or z is nonzero and (a, b)v := −1 otherwise.

Lemma 3.1.2 ([6]). [spindep] Let K := K(n, `). Let α be a totally positive generator of

the odd prime ideal p ⊆ OK . Then

spin(p, σ)spin(p, σ−1) =
∏
v|2

(α, ασ)v.

In particular, if α ≡ 1 mod 4 then
∏

v|2(α, ασ)v = 1.

Since 2 is assumed inert in K(n, `)/Q,

spin(p, σ)spin(p, σ−1) = (α, ασ)2.

Proof. We now prove Lemma 3.1.2 using the fact that∏
v

(α, ασ)v = 1.

• We know (α, ασ)v = 1 for all infinite places v because α is totally positive.

• Next we’ll show (α, ασ)v = 1 for all finite places v away from p, pσ, and 2.

Set v = q , p, pσ such that q - 2. Our strategy will be to show there exists

x0, y0 ∈ OK/q such that ασx2 + αy2 ≡ 1 mod q then apply Hensel’s Lemma.

Consider this equation rewritten as

ασx2 ≡ 1 − αy2 mod q.
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There are N(q)+1
2 squares in OK/q so the left hand side and the right hand

side each take on N(q)+1
2 values (since q , pi, p j implies the coefficients of

x and y are non-zero. Then the pigeon hole principal implies there exists

x0, y0 ∈ OK/q such that

ασx2
0 ≡ 1 − αy2

0 mod q.

It can not be the case that both x0 and y0 are 0.

If x0 . 0 mod q then x2
0 −

1−αy2
0

ασ
≡ 0 mod q. Then since q is prime to 2 and

x0 . 0, Hensel’s Lemma implies there exists x ∈ OK (q) such that x2 =
1−α jy2

0
uiαi

.

Therefore (α, ασ)q = 1. If y0 is nonzero, a similar argument works.

• We now show that (α, ασ)p = spin(p, σ−1) and (α, ασ)pσ = spin(p, σ).

If σ , τ ∈ Gal(K/Q), then spin(p, σ) = spin(pτ, σ);

spin(p, σ) =

(
α

pσ

)
=

(
ατ

pτσ

)
= spin(pτ, σ).

Therefore

spin(p, σ−1) = spin(pσ, σ−1) =

(
ασ

pσσ
−1

)
=

(
ασ

p

)
.

Then using properties of the Hilbert symbol,

(α, ασ)p =

(
ασ

p

)
since α generates p

=

(
α

pσ
−1

)
= spin(p, σ−1)

by applying the action of σ−1 to the equation defining the Hilbert symbol.

Also,

(α, ασ)pσ =

(
α

pσ

)
= spin(p, σ).

Then since
∏

v(α, ασ)v = 1, we are done. �
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3.2 Aside; Character Sums

In the next section we will state results of Friedlander, Iwaniec, Mazur, and

Rubin [6] on the distribution of spin. For n > 3, these results rely on a conjectural

improvement to Burgess’s result on short character sums [3]. In this section,

we introduce Burgess’s result and Friedlander, Iwaniec, Mazur, and Rubin’s

conjectural improvement.

Let χ be a non-principal real character mod q. We define

S χ(M,N) :=
∑

M<n<M+N

χ(n).

Theorem 3.2.1 (Burgess).

S χ(M,N) << N1− 1
r q

r+1
4r2 +ε ,

with any integer r ≥ 1 and any ε > 0, the implied constant depending only on r and ε.

Proof. See [3]. �

The bound is only non-trivial when N > q
r+1
4r . When [K : Q] = 3, this will be

enough, but when [K : Q] > 3, we will need something stronger.

Conjecture 3.2.2 (Cn). [6] Let χ be a non-principal real character mod q. Let n ≥ 3,

Q ≥ 3, N ≤ Q
1
n , and q ≤ Q. Then

S χ(M,N) << Q
1−δ

n +ε ,

with some δ = δ(n) > 0 and any ε > 0, the implied constant depending only on ε and δ.
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Conjecture Cn is true for n = 3; take r = 6 in Burgess’s bound to obtain

S χ(M,N) << N1− 1
6 q

7
144 +ε

≤ Q
47

144 +ε

since N ≤ Q
1
3 , and q ≤ Q. Taking δ = 1

48 , conjecture Cn states

S χ(M,N) << Q
47
144 +ε

so we have proven conjecture Cn for the case n = 3.

3.3 The Distribution of Spin; Known Results

Theorem 3.3.1. [6] Let K := K(n, `). Assume Conjecture Cn with exponent δ ≤ 2
n .

Letting p run over odd prime principal ideals in K,∣∣∣∣∣∣∣ ∑
N(p)≤x

spin(p, σ)

∣∣∣∣∣∣∣ << x1−ν+ε

where ν(n) = δ
2n(12n+1) . Here the implied constant depends only on ε and K.

Since conjecture Cn is true for n = 3 with δ = 1
48 as shown in Section 3.2, the

Theorem holds unconditionally for [K : Q] = 3 where ν = 1
10656 .

Furthermore, the results of Friedlander, Iwaniec, Mazur, and Rubin hold re-

gardless of congruence conditions.

Theorem 3.3.2. [6] The bound in Theorem 3.3.1 still holds when the sum is further

restricted to prime principal ideals which have a totally positive generator π satisfying

π ≡ µ mod M.
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Recall the definition of density given in Definition 1.4.1. Define

Π := {principal prime ideals of OK }, Λσ := {p ∈ Π : spin(p, σ) = 1}.

Let S ′ denote the set of primes of K that split completely in K/Q.

Corollary 3.3.3. Let K := K(n, `) Assume Conjecture 3.2.2 for n = [K : Q]. Let

σ ∈ Gal(K/Q) be non-trivial. Then

d(Λσ|Π) = d(Λσ ∩ S ′|S ′) =
1
2
.

Proof. Define

ΠN := {p : principal prime ideals of OK st. NormK/Q(p) < N}.

Λσ,N := {p ∈ ΠN : spin(p, σ) = 1}.

where σ ∈ Gal(K/Q) is non-trivial. Then we want to show

lim
N→∞

#Λσ,N

#ΠN
=

1
2
.

By Theorem 3.3.1, the following limit is bounded above;

lim
x→∞

∣∣∣∑N(p)≤x spin(p, σ)
∣∣∣

x1−ν+ε ≤ 1.

Therefore, since

lim
x→∞

x1−ν+ε(
x

log(x)

) = 0,

we can deduce that the limit of the product is 0. That is,

lim
x→∞

∣∣∣∑N(p)≤x spin(p, σ)
∣∣∣(

x
log(x)

) = 0.
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The prime number theorem says that

lim
x→∞

#Πx(
x

log(x)

) = 1

so applying the prime number theorem, we get

lim
x→∞

∣∣∣∑N(p)≤x spin(p, σ)
∣∣∣

#Πx
= 0. (3.1)

Observe that∑
N(p)≤x

spin(p, σ) =
∑
p∈Λσ,x

1 +
∑

p∈Πx−Λσ,x

(−1) = #Λσ,x − #(Πx − Λσ,x)

= 2#Λσ,x − #Πx.

Subbing
∑
N(p)≤x spin(p, σ) = 2#Λσ,x − #Πx to equation 3.1, we get

lim
x→∞

∣∣∣∣∣2#Λσ,x − #Πx

#Πx

∣∣∣∣∣ = 0.

Therefore

d(Λσ|Π) ==
1
2
.

By Theorem 3.3.2,

d(Λσ ∩ S ′|S ′) = d(Λσ|Π).

�

3.4 Quadratic Reciprocity

The proof of Lemma 3.1.2 used Hilbert Symbols to prove that the condition

spin(p, σ) = spin(p, σ−1)

is equivalent to a Hilbert symbol condition at places dividing 2. This next The-

orem uses a similar strategy to prove a quadratic-reciprocity style result, this
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time invoking the map vK from Definition 2.2.3 instead of using totally positive

elements.

Theorem 3.4.1. Let K := K(n, `). Let p be an odd prime of K such that ph(K) has totally

positive generator α ∈ OK . Let σ , 1 ∈ Gal(K/Q). Let u := vK(p). Then(
uα
pσ

)
=

(
ασ

p

)
.

Proof. It is a property of Hilbert symbols that

∏
v

(uα, ασ)v = 1

as we vary v over all places of K. Let K(v) denote the completion of K at v. Our

strategy will be to prove that

(uα, ασ)v = 1 for all places v , p, pσ. (3.2)

We then show that

(uα, ασ)p =

(
ασ

p

)
and

(uα, ασ)pσ =

(
uα
pσ

)
which proves the result.

Recall that (a, b)v := 1 for a, b ∈ K if the equation ax2 +by2 = z2 has a nontrivial

solution (x, y, z) ∈ K(v) where at least one of x, y, or z is nonzero and (a, b)v := −1

otherwise.

First consider the infinite places. Since ασ is totally positive, uαx2 + ασy2 = z2

always has the solution (x, y, z) = (0, 1,
√
ασ) in K(v) = R so 3.2 is proven for all

infinite places.

27



Next let q be any finite place away from 2, p, pσ. We will show that uαx2 +

ασy2 ≡ 1 mod q has a nontrivial solution in OK/q using the pigeon hole principal

and then we will apply Hensel’s Lemma.

We want to show there exist x, y ∈ OK/q such that

uαx2 ≡ 1 − ασy2 mod q. (3.3)

Since q , p, pσ, then uα, ασ . 0 mod q. Then there are Norm(q)+1
2 squares in OK/q

so the left hand side and the right hand side each take on Norm(q)+1
2 values. The

pigeon-hole principal implies there is a solution, x, y ∈ OK/q to equation 3.3.

Note that it can not be the case that x = y = 0. If x . 0 mod q then x2 −

1−ασy2

uα ≡ 0 mod q. Then since q , 2 and x . 0, Hensel’s Lemma implies there

exists x ∈ OK(q) such that x2 =
1−ασy2

uα . Setting z = 1, we have (uα, ασ)q = 1. If y is

nonzero, a similar argument works.

Recall that 2 is inert in K/Q by assumption. We now prove that equation

3.2 holds for v = 2. Let L := K(2)(
√

uα). Note that K(
√

uα) is a subfield of the

narrow ray class field over K of conductor p by the definition of u = vK(p) so 2 is

unramified in L/K.

If 2 splits in L/K(2) then uα is a square in K(2) so uαx2 + ασy2 = z2 has the

solution (x, y, z) = (0, 1,
√
ασ) in K(2).

Otherwise 2 is inert in L/K(2). Then by Corollary V.1.2 in [13],

NormL/K
(
O×L

)
= O×K(2)

so ασ is a norm in L, a quadratic extension of K. That is, there exist x, z ∈ K(2)

such that

ασ = z2 − uαx2,
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which implies that equation 3.2 is true for v = 2.

We have proven equation 3.2 holds for all places away from p and pσ so since

the product of Hilbert symbols over all places is 1,

(uα, ασ)p(uα, ασ)pσ = 1.

It is a standard fact of Hilbert symbols that

(uα, ασ)p =

(
ασ

p

)
and

(uα, ασ)pσ =

(
uα
pσ

)
because ασ is a generator of pσ and uα is a generator of p. This completes the

proof that (
uα
pσ

)
=

(
ασ

p

)
.

�
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CHAPTER 4

THE DENSITY OF A SPIN RELATION

The gestalt of this Chapter is Theorem 4.5.2 which

gives the “surprising” part of the formula in Theorem

5.4.3. The work in this Chapter is available as a pre-

print [9] and is pending publication. Inspired by the

statement of Lemma 3.1.2 in [6], to define M4, I imag-

ined sculpting a group with a Galois action by quoti-

enting as I saw intuitively fit in order to be left only

with the properties of the Hilbert symbol we wanted

to preserve. The units of a number field were the clay

and the Hilbert symbol was the chisel.

4.1 An Important Group; M4

Recall that K(n, `) denotes the number field of prime degree n over Q that is the

unique subextension of the `th cyclotomic field of degree n where ` ∈ Z+ such

that ` ≡ 1 mod n. We highlight some important assumptions and properties of

K := K(n, `);

∗ K is totally real.

∗ n = [K : Q] is prime.

∗ UT = U2.

∗ K is Galois over Q with cyclic Galois group.

∗ The class number h(K) is odd.

∗ 2 and 5 are inert in K/Q.
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Definition 4.1.1. For q a power of 2, we define the group

Mq :=

(
OK�qOK

)×
�((OK�qOK

)×)2.

The Galois group Gal(K/Q) acts on Mq in the natural way.

We will primarily be interested in M4, though we will also consider M8. We

will see in Remark 4.2.3 that M4 is a quotient of the narrow ray class group over

K of conductor 4.

Lemma 4.1.2. Let K be a cyclic number field of odd degree n over Q such that 2 is inert

in K. Then as Gal(K/Q)-modules,

M4 � (Z/2)n

and the invariants of the action of Gal(K/Q) are exactly ±1 ∈ M4.

Proof. This proof is due to Sam Mundy [12]. Consider the exact sequence

0→ 1 + 2(OK/4)→ (OK/4)× → (OK/2)× → 1. (4.1)

Note that OK/2 � F2n because K is cyclic of odd degree and 2 is inert in K. Also,

G � Gal(F2n/F2).

Viewing F2n as an additive group with Galois action by G � Gal(F2n/F2), there

is an isomorphism of Galois modules given by

ψ : F2n � OK/2→ 1 + 2(OK/4)

ψ : x 7→ 1 + 2x.

This map is easily seen to be a Galois equivariant homomorphism. Injectivity

and surjectivity follow from considering 2-adic expansions of elements in OK/4.
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Since ψ is an isomorphism we can rewrite the exact sequence of Galois modules

in equation 4.1 as

0→ F2n → (OK/4)× → F×2n → 1. (4.2)

Next consider the diagram of exact sequences below.

0 F2n (OK/4)× F×2n 1

0 F2n (OK/4)× F×2n 1

2(·) (·)2 (·)2

The first vertical map is multiplication by 2, which is the zero map. The

next two vertical maps are squaring. The third vertical map is an isomorphism

because F×2n is cyclic of odd order. Recall that

M4 := (OK/4OK)× /squares.

Then we apply the snake lemma to the diagram below.

1

0 F2n (OK/4)× F×2n 1

0 F2n (OK/4)× F×2n 1

F2n M4 1

0 (·)2 (·)2

The snake lemma gives us the exact sequence of G-modules

0→ F2n → M4 → 1.
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Therefore M4 � F2n as G-modules. The invariants of F2n are F2. Tracing through

the isomorphism we see that this corresponds to the invariants {±1} in M4. �

4.2 A Surprising Homomorphism

Recall the properties satisfied by K := K(n, `) listed in definition 2.2.1. Let Mq,G

denote the set of Gal(K/Q)-orbits of Mq for q a power of 2.

Letting m denote a narrow modulus with finite part m0, as in Section 1.1, let

JmK = Jm0
K denote the group of fractional ideals of K prime to m0 and let PmK = Pm0

K

denote the subgroup of JmK formed by the principal ideals with generator α ∈ K×

such that α ≡∗ 1 mod m. Note that since m is assumed narrow, α ≡∗ 1 mod m =⇒

α � 0. We let Pm
K = Pm0

K denote the set of prime ideals of OK co-prime to m0 so

that JmK is generated by Pm
K .

Definition 4.2.1. Let K := K(n, `). Let q ≥ 4 be a power of 2.

(a) Let P2
K denote the set of primes of K which are co-prime to 2.

r0 :P2
K → Mq

p 7→ α

where α ∈ OK is a totally positive generator for the principal ideal ph(K).

(b) Let P2
Q denote the set of odd rational primes. Define the map

r :P2
Q → Mq,G

p 7→ [r0(p)]

where p is any prime in K above p. Here [α] denotes the Gal(K/Q)-orbit of

α ∈ M4 considered in Mq,G.
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The map r0 is well-defined out of P2
K ; recall that by Lemma 2.1.1, UT = U2

is equivalent to the coincidence of the narrow and wide Hilbert class groups so

UT = U2 if and only if all principal ideals have a totally positive generator. Since

squares are trivial in Mq by definition and UT = U2, the map r0 is well-defined.

The map r is well-defined out of P2
Q because Mq,G is the quotient of Mq by

the Gal(K/Q)-action so different choices of primes p of K above p give the same

result; r0(pσ) = r0(p)σ for σ ∈ Gal(K/Q) and p an odd prime of K.

The map

r0 : P2
K → Mq

sends primes p ∈ P2
K to the congruence class in Mq corresponding to a totally

positive generator of ph(K). Since Jq
K is generated by Pq

K = P2
K , the map r0 in-

duces a homomorphism

ϕ0 : Jq
K → Mq.

Lemma 4.2.2. Let K := K(n, `). Then the homomorphism ϕ0 : Jq
K → Mq induces a

well-defined surjective homomorphism

ϕ : nClq
K � Mq.

Proof. By Proposition 1.1.3, every element of nClq is represented by an integral

ideal. Let a and b be two integral ideals representing the same element of nClq.

Then by Proposition 1.1.3, there exist nonzero a, b ∈ OK such that

ba = ab,

a ≡ b ≡ 1 mod q, and

ab � 0.
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Since ϕ0 : Jq
K → Mq is a homomorphism,

ϕ0(bOK)ϕ0(a) = ϕ0(aOK)ϕ0(b).

Noting that h(K) is odd and squares are trivial in Mq by definition, ϕ0 maps

any principal integral ideal (α) to the class in Mq containing the representative

α ∈ OK where α is a totally positive generator.

Since UT = U2, every principal ideal of OK has a totally positive generator so

there exists a unit u ∈ O×K such that ua � 0 and ϕ0(a) = ua. Since ab � 0, then

u−1b � 0 so ϕ0(b) = u−1b. We know that a ≡ b ≡ 1 mod q. Since squares are trivial

in Mq by the definition of Mq, this implies

u2a ≡ b in Mq

=⇒ ua ≡ u−1b in Mq

=⇒ ϕ0(aOK) = ϕ0(bOK).

=⇒ ϕ0(a) = ϕ0(b)

Therefore the homomorphism ϕ0 induces a well-defined homomorphism from

nClq
K .

We now show surjectivity. Let X ∈ Mq. Let m be the narrow modulus with

finite part q and consider the exact sequence from Theorem 1.1.4;

1→ U/Um,1 → Km/Km,1 → nClmK → C → 1

and the canonical isomorphism

Km/Km,1 � (±)n
× (OK/q)× . (4.3)

Consider only the 2-part of each group. Then since h(K) is odd, by Lemma
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A.0.1 we have the short exact sequence

1→ (U/Um,1)[2∞]→ (Km/Km,1)[2∞]→ (nClmK)[2∞]→ 1.

Note that since squaring sends all signatures to the trivial signature, the

canonical isomorphism in equation 4.3 induces a canonical isomorphism on the

2-part modulo squares;

(Km/Km,1)[2∞]/(Km/Km,1)[2∞]2 � (±)n × Mq.

Consider the squaring map and apply the snake lemma to get the following

commutative diagram of exact sequences;

1 (U/Um,1)[2∞] (Km/Km,1)[2∞] (nClq
K)[2∞] 1

1 (U/Um,1)[2∞] (Km/Km,1)[2∞] (nClq
K)[2∞] 1

U/U2 (±)n × Mq nClq
K/(nClq

K)2 1

1 1 1

ψ

(·)2 (·)2 (·)2

Then ψ induces an isomorphism

ψ : ((±)n × Mq)�image(U/U2) −→
nClq

K�(nClq
K)2.

Tracing through the definitions of the maps, ϕ ◦ ψ is surjective (it is essentially

the identity). Therefore ϕ is surjective. �

Remark 4.2.3. For K := K(n, `),

ϕ : nCl4
K → M4
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is a canonical surjective homomorphism with

# ker(ϕ) =
h(2n − 1)

(U2 : Um,1)

where m denotes the narrow modulus of finite part 4.

Proof. Lemma 4.2.2 shows that ϕ : nCl4
K → M4 is a well-defined surjective group

homomorphism.

We let m denote the narrow modulus with finite part 4 and hm := #nCl4
K .

Recall that K(n, `) is totally real by assumption and 2 is inert so Norm(2) = 2n

and by Theorem 1.1.4,

hm = 4n h(2n − 1)
(U : Um,1)

Also recall that UT = U2 for K(n, `) so

(U : Um,1) = (U : U2)(U2 : Um,1) = 2n(U2 : Um,1).

Therefore

hm = 2n h(2n − 1)
(U2 : Um,1)

.

Since ϕ : nCl4
K → M4 is a well-defined surjective finite group homomorphism,

hm
# ker(ϕ)

= #M4

Recall that Lemma 4.1.2 shows #M4 = 2n. Therefore

# ker(ϕ) =
hm
2n

=
h(2n − 1)

(U2 : Um,1)

proving our second assertion. (In particular, we have proven that (U2 : Um,1)

divides h(2n − 1)). �
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Example 4.2.4. Let K = Q. Then U/U2 = {±1}. For p an odd prime, nRp
Q = Q(ζp), the

pth cyclotomic field, and nCl4
Q � (Z/4)×.

When K = Q and q = 4, Remark 4.2.3 implies that ϕ from Lemma 4.2.2 is an

isomorphism.

Letting p be a positive odd prime, then

vQ : p 7→


1 if p is a square in Q(ζp)

−1 if −p is a square in Q(ζp).

One can show that this is equivalent to

vQ : p 7→


1 if p ≡ 1 mod 4

−1 if p ≡ −1 mod 4.

4.3 Equidistribution

Definition 4.3.1. Let K = K(n, `). Define the following sets of rational primes.

S := {p ∈P2`
Q : fK/Q(p) = 1},

I := {p ∈P2`
Q : fK/Q(p) = n}.

Define the following sets of primes of K.

S ′ := {p ∈P2`
K : fK/Q(p) = 1},

I′ := {p ∈P2`
K : fK/Q(p) = n}.

That is, S ⊆ P2`
Q is the set of (odd) rational primes which split completely

in K/Q and I ⊆ P2`
Q is the set of odd rational primes which are inert in K/Q.

Furthermore, S ′ is the set of primes of K laying above the primes in S and I′ is

the set of primes of K laying above the primes in I.
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Note that since K/Q is cyclic of prime degree n, then fK/Q(p) = 1 or n for all

p ∈ P2`
Q so in this case, P2`

Q is the disjoint union of S and I. The next Lemma

asserts that for K := K(n, `), the primes are equidistributed in M4. Although the

equidistribution generalizes to Mq for q a power of 2, note that the number of

elements of M8 for example is different than the number of elements of M4 so

the generalized statement would need to be adjusted accordingly.

Lemma 4.3.2. Let K := K(n, `).

(a) For any α ∈ M4, the density of p ∈P2`
K such that ϕ(p) = α is 1

2n . That is,

d(r−1
0 (α)|P2`

K ) =
1

#M4
=

1
2n .

(b) Furthermore, the density does not change when we restrict to primes of K

that split completely in K/Q. That is,

d(r−1
0 (α) ∩ S ′|S ′) =

1
#M4

=
1
2n .

Proof. Recall that nR4 = nR4
K denotes the narrow ray class field over K of con-

ductor 4m∞. Let G := Gal(nR4 /K). Define H ≤ G to be

H := Art(ker(ϕ))

where Art denotes the Artin isomorphism. Then we have the following commu-

tative diagram of exact sequences

1 ker(ϕ) nCl4 M4 1

1 H G M4 1

ϕ

Art Art id.

where surjectivity of ϕ is proven in Lemma 4.2.2. Let L be the fixed field of H so

that Gal(L/K) � G/H.
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nR4

L

K

G

H

This induces a canonical isomorphism

M4 � G/H � Gal(L/K).

For α ∈ M4, define P(α) to be the set of odd unramified prime ideals of K which

map to α via ϕ. Then letting σ ∈ G/H corresponding to α,

P(α) = RayL|K(σ).

Then by Theorem 1.4.2, P(α) has a density and it is given by

1
# Gal(L/K)

=
1

#M4
.

The first asserted equality of part (a) is proved. The second equality is true

by Lemma 4.1.2.

To prove part (b), observe that

d(r−1
0 (α)|P2`

K ) = d(r−1
0 (α) ∩ S ′|S ′)d(S ′|P2`

K ) + d(r−1
0 (α) ∩ I′|I′)d(I′|P2`

K ).

Since d(S ′|P2`
K ) = 1, d(I′|P2`

K ) = 0, and 0 ≤ d(r−1
0 (α) ∩ I′|I′) ≤ 1,

d(r−1
0 (α)|P2`

K ) = d(r−1
0 (α) ∩ S ′|S ′).

�
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4.4 Property Star and the Starlight invariant

Let K := K(n, `). Recall the map vK defined in Definition 2.2.3,

vK :P2
K →

U�U2

p 7→ up

such that upαp is a square (element) in nRpK where αp ∈ OK is a totally positive

generator of p. Recall the definition of spin from Definition 3.1.1.

Theorem 4.4.1. Let K := K(n, `). Let p be a prime of K coprime to 2 such that ph(K) has

totally positive generator α ∈ OK . Let σ be a generator of the Galois group, Gal(K/Q).

Then the following are equivalent.

(a) spin(p, σ) = spin(p, σ−1)

(b) (α, ασ)2 = 1

(c)
(

vK (p)σ

p

)
= 1

Proof. Part (a) is equivalent to part (b) by Lemma 3.1.2. We will prove that part

(a) is also equivalent to part (c).

Observe that if σ , τ ∈ Gal(K/Q), then spin(p, σ) = spin(pτ, σ);

spin(p, σ) =

(
α

pσ

)
=

(
ατ

pτσ

)
= spin(pτ, σ).

Therefore

spin(p, σ−1) = spin(pσ, σ−1) =

(
ασ

pσσ
−1

)
=

(
ασ

p

)
.
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Then

spin(p, σ) spin(p, σ−1) =

(
α

pσ

) (
ασ

p

)
=

(
vK(p)
pσ

)
by Theorem 3.4.1

=

vK(p)σ
−1

p

 .
By Lemma 3.1.2 and since 2 is inert in K/Q,

spin(p, σ) spin(p, σ−1) = (α, ασ)2 =
(
ασ

−1
, α

)
2

=
(
α, ασ

−1)
2
.

We have shown that

(α, ασ
−1

)2 =

vK(p)σ
−1

p

 .
Replacing σ−1 with σ and vise versa, we obtain a proof of the desired statement.

�

Recall that M4,G denotes the set of Gal(K/Q)-orbits of M4.

Theorem 4.4.2. Let K := K(n, `). Assume 5 is inert in K/Q. Let α ∈ OK denote a

representative of [α] ∈M4,G. Define the map

? : M4,G → {±1}

[α] 7→


1 if (α, ασ)2 = 1 for all non-trivial σ ∈ Gal(K/Q)

−1 otherwise

Then ? is a well-defined map.

Proof. We will show that ? is well-defined out of M4. Then we show ? is a

property of the full Galois orbit.
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Let α, β ∈ OK be two representatives of the same class in M4 so

α ≡ βγ2 mod 4OK for some γ ∈ OK .

If α ≡ βγ2 mod 8OK then we can apply Lemma 2.3 from [6] to see that

(α, ασ)2 = (β, βσ)2 for all σ ∈ Gal(K/Q). Therefore, we may assume

α ≡ 5βγ2 mod 8OK .

Suppose (α, ασ)2 = 1. Then by Lemma 2.3 in [6], since α ≡ 5βγ2 mod 8OK ,

(
5βγ2,

(
5βγ2

)σ)
2

= 1

=⇒ (5β, (5β)σ)2 = 1 by a property of Hilbert symbols.

Using bimultiplicativity of the Hilbert symbol,

(5β, (5β)σ)2 = (5, 5)2(β, 5)2(5, βσ)2(β, βσ)2.

Notice that since 5 is inert in K/Q, applying the Galois action to the quadratic

form for (β, 5)2 yields the form for (5, βσ)2 so the cross terms cancel one another.

Therefore

(5β, (5β)σ)2 = (5, 5)2(β, βσ)2.

Since 5 × 22 + 5 × 12 = 52, (5, 5)2 = 1. Therefore

(5β, (5β)σ)2 = (β, βσ)2

so

(α, ασ)2 = 1 =⇒ (β, βσ)2 = 1.

Therefore ? is a well-defined map from M4.
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We now prove that if α, β ∈ M4 are the in same Galois orbit, then ?(α) = ?(β).

Let τ ∈ Gal(K/Q) such that ατ = β for α, β ∈ M4.

Suppose (α, ασ)2 = 1 for all σ , 1 in Gal(K/Q). Then in K(2), the completion of

K at 2OK , there is a nontrivial solution x, y, z to

αx2 + ασy2 = z2.

Applying the action of τ yields a nontrivial solution to

βx2 + βσy2 = z2

so (β, βσ) = 1 for all σ , 1. �

Recall that by Lemma 4.1.2, the elements of M4 that are invariant under the

Gal(K/Q)-action are exactly ±1. The following lemma fully describes ? on these

invariants.

Lemma 4.4.3. Let K := K(n, `).

(a) ?(1) = 1.

(b) ?(−1) = −1.

Proof. Observe that (1, 1)2 = 1 because x2 + y2 = z2 has the solution (x, y, z) =

(1, 0, 1).

If (−1,−1)2 = 1, there would be a non-trivial solution to x2 + y2 + z2 ≡ 0 mod 4.

Since there is no such solution, (−1,−1)2 = −1. �

I’ve named the following invariant after John Friedlander, Henryk Iwaniec,

Barry Mazur, and Karl Rubin; this invariant comes from a dependence relation
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between the spins of a prime ideal which was originally pointed out as a Hilbert

symbol condition in section 11 of [6].

Recall the properties satisfied by K(n, `) listed on page 16.

Definition 4.4.4. Let K := K(n, `). Define the Starlight invariant, mK to be the number

of Gal(K/Q)-orbits X of M4 of non-trivial size such that ?(X) = 1. That is, for σ a

generator of Gal(K/Q),

mK = #{X ∈ M4,G : #X = n and ?(X) = 1}.

Remark 4.4.5. By Lemma 4.4.3, it is equivalent to define the Starlight invariant, mK

as

mK := #?−1(1) − 1.

Here ? refers to the map ? : M4,G → ±1 given in Theorem 4.4.2.

Definition 4.4.6. Define

? : P2
K → {±1} and ? : P2

Q → {±1}

as the composition of ? as defined in Theorem 4.4.2 and r0 and r respectively as defined

in Definition 4.2.1.

That is, letting p ∈ P2
Q and letting p ∈ P2

K be any prime of K,we define ?(p) :=

? ◦ r0 and we define ?(p) := ? ◦ r, the composition of the maps r0 and r respectively

with the map ? from Definition 4.2.1.

We say that a prime p ∈P2
K (respectively p ∈P2

Q) has property ? or that ? is true

for p (respectively p) whenever ?(p) = 1 (respectively ?(p) = 1).

The main results of this Chapter, Theorem 4.5.2 and Theorem 4.5.4 give for-

mulas in terms of n and mK for the density of rational primes (assumed to split

completely in Theorem 4.5.2) that satisfy property ?.
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4.5 The Little Density Theorem

Recall that P2`
Q denotes the set of odd rational primes unramified in K/Q. For

p ∈ P2`
Q , let fK/Q(p) := fK/Q(p) denote the inertia degree of p for the extension

K/Q where p is any prime in K laying above p. Note that K(n, `) is Galois so

fK/Q(p) is well-defined. Recall from Definition 4.3.1,

S := {p ∈P2`
Q : fK/Q(p) = 1}, I := {p ∈P2`

Q : fK/Q(p) = n},

S ′ := {p ∈P2`
K : fK/Q(p) = 1}, I′ := {p ∈P2`

K : fK/Q(p) = n}.

Definition 4.5.1. Let K = K(n, `). Define the following sets of rational primes.

B := {p ∈P2`
Q : ?(p) = 1}

R := B ∩ S .

Recall that for sets of primes R ⊆ S , we use the notation d(R|S ) to denote the

relative density of primes p ∈ S that lay in R; see definition 1.4.1.

Theorem 4.5.2. Let K = K(n, `) such that n , 2 is prime. Then

dK := d(R|S ) =
1 + mKn

2n .

Proof. Let N ∈ Z+. Let RN and S N denote the sets of primes in R and S respec-

tively of norm less than N. We will show that

lim
N→∞

#RN

#S N
=

#{X ∈ M4 : ?(X) = 1}
#M4

=
1 + mKn

2n . (4.4)

Let R′N ⊆ P2`
K denote the set of primes of K which lay above rational primes

in RN ⊆ P2`
Q and define S ′N similarly with respect to S N ⊆ P2`

Q . Let r0,N denote
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the restriction of r0 to S ′N ⊆ P2`
K . Since we have restricted to primes that split

completely in K/Q,
#RN

#S N
=

#R′N
#S ′N

and that

R′N =
⋃
?(α)=1

r−1
0,N(α)

where the above is a disjoint union over elements α ∈ M4 such that ?(α) = 1.

Therefore
#R′N
#S ′N

=
1

#S ′N

∑
?(α)=1

#r−1
0,N(α).

By Lemma 4.3.2, this implies

lim
N→∞

#R′N
#S ′N

=
∑
?(α)=1

lim
N→∞

#r−1
0,N(X)

#S ′N

=
∑
?(α)=1

1
2n

=
#{α ∈ M4 : ?(α) = 1}

2n .

This proves the first equality in equation 4.4. Let σ be a generator of Gal(K/Q).

By Lemma 4.1.2, the elements of α ∈ M4 such that ασ = α are α = ±1 and we

know that ?(1) = 1 and ?(−1) = −1 by Lemma 4.4.3. Recalling that mK = #{[α] ∈

M4,G : ασ , α, ?(α) = 1}, this implies

#{α ∈ M4 : ?(α) = 1} = mKn + 1.

since Gal(K/Q) is cyclic so Galois orbits X ∈ M4,G such that Xσ , X each contain

n elements. �

We now state an extended version of Lemma 4.3.2 which handles the inert

case allowing us to give a formula for d(B|P2`
Q ), the overall density of rational

primes which satisfy ?.
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Lemma 4.5.3. Let K := K(n, `).

(a) For any α ∈ M4, the density of p ∈P2`
K such that ϕ(p) = α is 1

2n . That is,

d(r−1
0 (α)|P2`

K ) =
1

#M4
=

1
2n .

(b) Restricting to primes of K which split completely in K/Q,

d(r−1
0 (α) ∩ S ′|S ′) =

1
#M4

=
1
2n .

(c) Restricting to inert primes of K,

d(r−1
0 (α) ∩ I′|I′) =


1
2 if α = ±1

0 otherwise.

Proof. Part (a) and part (b) were proven in Lemma 4.3.2.

If α , ±1 (for α ∈ M4) then r−1
0 (α) ∩ I′ = ∅ since ±1 are the only invariants

of the Gal(K/Q)-action on M4 by Lemma 4.1.2. Therefore d(r−1
0 (α) ∩ I′|I′) = 0 if

α , ±1.

Now fix s = ±1. Then

r−1
0 (s) ∩ I′ =

{
p ∈ I′ :

(
α

4

)
K

= s
}

where
(
α
4

)
K

denotes the quadratic residue symbol in OK for α ∈ OK a totally

positive generator of ph(K). This is a congruence condition so it is routine to

show that

d(r−1
0 (s) ∩ I′|I′) =

1
2
.

by Theorem 1.4.2. �

Theorem 4.5.4. Let K = K(n, `) such that n , 2 is prime. Then

d(B|P2`
Q ) =

2n−1 + (mKn + 1)(n − 1)
2nn

.
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Proof. Let N ∈ Z+. Let IN and S N denote the sets of (rational) primes in I and S

respectively with positive generator less than N. Let I′N ⊆ P2`
K denote the set of

primes of K which lay above rational primes in IN ⊆P2`
Q and define S ′N similarly

with respect to S N ⊆P2`
Q . Note that while S ′N = {p ∈ S ′ : NormK/Q(p) < N},

I′N = {p ∈ I′ : NormK/Q(p) < Nn}.

Observe that since we have restricted to primes which are inert in K/Q,

#B ∩ IN

#IN
=

#B′ ∩ I′N
#I′N

where B′ := {p ∈P2`
K : ?(p) = 1} = {p ∈P2`

K : p lays above some p ∈ B}.

Let r0,N denote the restriction of r0 to I′N ⊆ P2`
K . Observe that p ∈ I′ implies

pσ = p so r0(p) = ±1 for all p ∈ I′ by Lemma 4.1.2. Lemma 4.4.3 states that

?(1) = 1 and ?(−1) = −1. Therefore

B′ ∩ I′N = r−1
0 (1) ∩ I′N .

Therefore d(B′ ∩ I′|I′) = 1
2 by part (c) of Lemma 4.5.3. Then since #B∩IN

#IN
=

#B′∩I′N
#I′N

,

we have proven that

d(B ∩ I|I) =
1
2
. (4.5)

Note that since K/Q is cyclic, P2`
Q is the disjoint union of S and I.

d(B|P2`
Q ) = lim

N→∞

#BN

#P2`
Q,N

= lim
N→∞

#B ∩ IN

#IN

#IN

#P2`
Q,N

+
#B ∩ S N

#S N

#S N

#P2`
Q,N


=

(
1
2

) (
1
n

)
+

(
mKn + 1

2n

) (
n − 1

n

)
by Theorem 4.5.2

=
2n−1 + (mKn + 1)(n − 1)

2nn
.

�
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4.6 Computed Starlight Invariants

Table 4.1 gives some computed values of the Starlight invariant mK for the num-

ber fields K := K(n, `) for the specified n = [K : Q] and conductor `. See Ap-

pendix B for the code used to compute these values in magma [2]. Recall that

Definition 2.2.1 asserted the following conditions;

∗ UT = U2.

∗ The class number of K(n, `), is odd.

∗ 2 and 5 are inert in K(n, `)/Q.

These conditions are met by the number fields in Table 4.1 with the exception

that an asterisk denotes a number field in which 2 and/or 5 is not inert. In

the last row, Table 4.1 gives the restricted density coming from Theorem 4.5.2

of primes p that split as completely as possible in K(p)/Q given the necessary

ramification, restricted to primes that split completely in K/Q. For example, the

second column of Table 4.1 tells us that if K := K(5, 11), the unique subextension

of the 11th cyclotomic field of degree 5 over Q, then mK = 1 and Theorem 4.5.2

states that the density of primes p ∈ S that lay in R is 3
16 .
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n 3 5 7 11 13 17 19
l 7 11 43 23 53 103 191

mK 1 1 3 3 5 17 27
d(R|S ) 1

2
3

16
11
64

17
1024

33
4096

145
65536

257
262144

Table 4.1: Computed Starlight invariants
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4.7 Bounds

Lemma 4.7.1. Let K := K(n, `). For all α ∈ M4,

?(α) = 1 =⇒ ?(−α) = −1.

Proof. By Lemma 4.4.3, (−1,−1)2 = −1.

Next note that (a, b)2 = (aσ, bσ)2 for all σ ∈ Gal(K/Q) since 2 is inert in K.

Assume ?(α) = 1. Then (α, ασ)2 = 1 for all nontrivial σ ∈ Gal(K/Q). Let

σ ∈ Gal(K/Q) be nontrivial. By bimultiplicativity of Hilbert symbols,

(−α,−ασ)2 = (−α,−1)2(−α, ασ)2

= (−1,−1)2(α,−1)2(−1, ασ)2(α, ασ)2.

Next observe (α,−1)2 = (−1, α)2 = (−1, ασ)2, the second equality coming from

the Galois-invariance shown earlier in this proof. Therefore (α,−1)2(−1, ασ)2 = 1.

Then since (α, ασ)2 = 1 and (−1,−1)2 = −1, we get that

(−α,−ασ)2 = −1.

Therefore ?(−α) = −1. �

Recall the Definitions 4.3.1 and 4.5.1 defining S and R.

Theorem 4.7.2. Let K := K(n, `).

1
2n ≤ d(R|S ) ≤

1
2
.

Proof. By Theorem 4.5.2,

d(R|S ) =
1 + mKn

2n =
#{α ∈ M4 : ?(α) = 1}

2n .
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Lemma 4.7.1 implies the upper bound; note that α , −α in M4 because −1 is

not a square modulo 4OK .

The lower bound is true because ?(1) = 1 by Lemma 4.4.3 so

#{α ∈ M4 : ?(α) = 1} ≥ 1.

�
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CHAPTER 5

A DENSITY OF RAMIFIED PRIMES

5.1 A Family of Number Fields Depending on p

Let K := K(n, `) as defined on page 16. Recall that Lemma 2.1.3 showed that for

odd primes p, there exists a unique quadratic subextension of the narrow ray

class field over K of conductor p.

Definition 5.1.1. Let K := K(n, `). Let p ∈ P2`
Q (i.e. p is an odd rational prime

unramified in K/Q). Define the number field K(p) depending on p and K to be the

composite of the fields {R(p)}p as p varies over all primes of K laying above p where R(p)

is the unique quadratic subextension of nRp /K, the narrow ray class field over K of

conductor p.

Remark 5.1.2. K(p)/Q is a normal extension. Therefore

e f g = [K(p) : Q] = 2g0n

where e, f , and g denote respectively the ramification index, the inertia degree, and the

number of distinct primes laying above p all relative to the extension K(p)/Q. Here g0

denotes the number of distinct primes of K laying above the rational prime p.

Since K := K(n, `) includes the assumption that K is cyclic over Q, then g0 = 1

or n depending on whether p ∈ I or p ∈ S where I and S are as defined on page

38;

S := {p ∈P2`
Q : fK/Q(p) = 1}, I := {p ∈P2`

Q : fK/Q(p) = n},

S ′ := {p ∈P2`
K : fK/Q(p) = 1}, I′ := {p ∈P2`

K : fK/Q(p) = n}.
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K(p) ?

R(p1) · · · R(pg0)

K p1 · · · pg0

Q p

2g0

2

n

Figure 5.1: A field diagram depicting K(p).

When p ∈ I, there is only one way that p can factor in K(p)/Q; in this case

[K(p) : Q] = 2n with e = 2 and f = n. The case p ∈ S is more interesting.

Proposition 5.1.3 states that e = 2 (so p is always ramified in K(p)/Q) and the

inertia degree can only be 1 or 2. This completely determines the factorization

of p in K(p)/Q since the extension is normal.

Proposition 5.1.3. Given p ∈ S , there are two ways that p can factor in K(p)/Q;

Case 1: e = 2, f = 1, and g = 2n−1n.

Case 2: e = 2, f = 2, and g = 2n−2n.

Proof. We know that e = 2 because each prime p of K above p is totally ramified

in the quadratic extension R(p) and is unramified in each R(q) for p , q. We also

know n|g since p splits completely in K/Q. This means f must divide 2n−1, but in

fact f must divide 2 because f is the degree of the residue field extension which

is cyclic and embeds into the Galois group of K(p)/Q, but K(p)/K has no even

cyclic subextension of degree greater than 2. Therefore f |2. �

Fixing a prime p of K above p, we can determine how p factors in K(p)/Q if
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we know how p factors in each R(pσ) for σ ∈ Gal(K/Q).

Remark 5.1.4. Fix a prime p of K above p ∈ S . Let Rσ := R(pσ) denote the unique

quadratic subextension of the narrow ray class field over K of conductor pσ.

(a) If fRσ/K(p) = 1 for all σ ∈ Gal(K/Q) then fK(p)/K(p) = 1, which implies we

are in case 1 of Proposition 5.1.3.

(b) If there exists σ ∈ Gal(K/Q) such that fRσ/K(p) = 2 then fK(p)/K(p) = 2,

which implies we are in case 2 of Proposition 5.1.3.

It is an exercise in algebraic number theory to show part (a) of Remark 5.1.4.

One could apply Theorem 29 in Chapter 4 of [8] for example. Part (b) is true

because inertia degrees are divisible in towers.

Using the Gal(K/Q) action, the next Proposition implies that knowing the

factorization of p in each Rσ is equivalent to knowing the factorization of each

pσ in R1. This is more useful for computations since only one ray class field

needs to be computed in order to determine how p factors in K(p)/Q.

Let K := K(n, `). Let p ∈ S . Fix a prime p of K above p and let σ, τ ∈ Gal(K/Q).

Let fσ(τ) denote the inertia degree of pτ in the quadratic extension R(pσ)/K where

R(pσ) is the unique quadratic subextension of the narrow ray class field over K

of conductor pσ. Then we have the following Proposition.

Proposition 5.1.5. Let K := K(n, `). Let p ∈ S . Fix a prime p of K above p and let σ,

τ, ω ∈ Gal(K/Q). Then

fσ(τ) = fωσ(ωτ)

Proof. Apply the action of ω ∈ Gal(K/Q). �
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Example 5.1.6. For example, set n = 3 and let p1, p2, p3 denote the three primes of K

above p. Then Proposition 5.1.5 implies

fR(p2)/K(p1) = fR(p3)/K(p2) = fR(p1)/K(p3) and

fR(p3)/K(p1) = fR(p2)/K(p3) = fR(p1)/K(p2)

so we only need two pieces of data in order to determine how p factors in K(p). In

general this implies we need n − 1 pieces of data to determine how p factors in K(p).

If any of the n− 1 inertia degrees are 2, then the inertia degree of p in Kp/Q is

also 2 by Remark 5.1.4. Fixing τ, the likelihood of each f (σ)τ being equal to 1 is

1
2 as σ , τ varies, which suggests the naive heuristic that the density of primes

p which split completely in Kp/Q might be

1
2n−1 .

However, this assumes independence of the n − 1 pieces of data, which is not

the case, and magma data will verify that this naive heuristic does not work for

n > 3. It does work for n = 3, but this is essentially a coincidence because some

2’s cancel.

5.2 K(p) and Spin

Let K := K(n, `). Fix a prime p ∈ S ′; p is a prime of K that lays above an odd

rational prime that splits completely in K/Q. For σ ∈ Gal(K/Q), let R(pσ) denote

the unique quadratic subextension of the narrow ray class field over K of con-

ductor pσ noting that R(pσ) exists uniquely by Lemma 2.1.3. Recall fσ(τ) denotes

the inertia degree fR(pσ)/K(pτ) of pτ considered in R(pσ)/K.
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Lemma 5.2.1. Let K := K(n, `). Fix a prime p ∈ S ′. Then

spin(p, σ) =

(
α

pσ

)
= 1 ⇐⇒ p splits in R(pσ)/K

⇐⇒ fσ(1) = 1

Proof. Recall the map vK defined in Definition 2.2.3. Let u := vK(p) and uσ :=

vK(p)σ = vK(pσ). We prove
(

uσασ
p

)
= 1 if and only if p splits in R(pσ) and then

apply Theorem 3.4.1. Consider the natural injective homomorphism of residue

fields

OK/p ↪→ OR(pσ)/P

where P is a prime above p in R(pσ).

If
(

uσασ
p

)
= 1 then there exists x ∈ OK/p such that uσασ ≡ x2 mod p.

Then considered in OR(pσ)/P, uσασ is a square so the natural injective homo-

morphism of residue fields is surjective which implies fR(pσ)/K(p) = 1, i.e. p splits

completely in R(pσ)/K(p).

Conversely, if p splits in R(pσ) then the residue field inclusion is surjective

so there exists x ∈ OK/p such that x =
√u jα j in OR(pσ)/P. Then x2 = uσασ so

injectivity implies
(

uσασ
p

)
= 1. �

5.3 Two Conjectures

As in Corollary 3.3.3, for σ ∈ Gal(K/Q) define

Π := {principal prime ideals of OK} and Λσ := {p ∈ Π : spin(p, σ) = 1}.
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Recall the definitions of R and B from Definition 4.5.1;

B := {p ∈P2`
Q : ?(p) = 1}

R := B ∩ S

and note that ?(p) = 1 exactly when for p ∈P2`
K above p ∈P2`

Q ,

spin(p, σ) = spin(p, σ−1) for all σ , 1 ∈ Gal(K/Q)

by Theorem 4.4.1 and Theorem 4.4.2.

The next Conjecture asserts that Corollary 3.3.3 still holds restricting to

primes p ∈ Π such that spin(p, σ) = spin(p, σ−1) for all non-trivial σ ∈ Gal(K/Q).

Note that Theorem 3.3.2 does not apply.

Conjecture 5.3.1. Let K := K(n, `). Assume Conjecture 3.2.2 for n = [K : Q]. Let

σ ∈ Gal(K/Q) be non-trivial. Recall

Λσ := {p ∈ Π : spin(p, σ) = 1} and B := {p ∈ Π : spin(p, σ) = spin(p, σ−1)∀σ , 1}

Then

d(Λσ ∩ B|B) = d(Λσ|Π).

In Section 11 of [6], Friedlander, Iwaniec, Mazur, and Rubin pose a prob-

lem; for n > 3, aside from the dependence relation given in Theorem 3.1.2,

are there any other dependence relations between spin(p, σ) and spin(p, τ) for

σ, τ ∈ Gal(K/Q)? The following is my conjectural answer to a weak version of

this problem in which we only consider the asymptotic dependence of spins of a

fixed prime ideal. Conjecture 5.3.2 asserts the asymptotic independence of spin.

The conjecture is supported by data obtained from magma.
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Conjecture 5.3.2 (An). Let σ, τ ∈ Gal(K/Q) non-trivial such that σ , τ and σ , τ−1.

Then

d(Λσ ∩ Λτ|Π) = d(Λσ|Π)d(Λτ|Π) and

and

d(Λσ ∩ Λτ ∩ B|B) = d(Λσ ∩ B|B)d(Λτ ∩ B|B).

Note that Conjecture 5.3.2 is vacuously true for n = 3. The data on pages

61 and 62 supports Conjecture 5.3.2 for n = 5, 7. If there are no dependence

relations between σ and τ then Conjecture 5.3.2 is true, but not conversely.

Tables 5.1 (for n = 3), 5.2 (for n = 5), and 5.3 (for n = 7) give a sense of

intuition for the rate of convergence of the relative density d(F|S ) in Theorem

5.4.3 of rational primes that split “as completely as possible” in K(p), restricted

to those that split completely in K/Q.

The tables for n = 5 and n = 7 support Conjecture 3.2.2 and Conjecture 5.3.2

in the cases n = 5 and n = 7. Each row represents a number field K with the

desired properties; namely K is the subextension of the `th cyclotomic field of

degree n over Q for the given values of `. Each column of the table gives the

percentage of the time p lays in a set F after checking the first 104, 105, 106, or

107 rational primes p that split completely in K/Q. That is, each column gives

#FN

#S N

for some N such that #S = 104, 105, 106, or 107.

An asterisk ∗ denotes when 2 splits in K/Q. Note that our results are only

proven if 2 is inert in K/Q. Nevertheless the densities seem to work out as pre-

dicted.
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` 104 105 106 107

7 24.8 24.989 24.9866 24.99925
13 25.16 25.045 24.9815 24.99505
19 25.32 24.946 24.988 25.00635
31∗ 24.81 24.852 25.0435 25.01285
37 26.19 24.998 25.0008 25.00079
43∗ 25.22 24.872 24.9834 24.98046
61 24.65 24.999 24.9525
67 24.83 25.028 25.01
73 24.46 25.111 24.9675
79 24.49 24.843 25.094

Average 24.993 24.9683 25.00078
Median 24.82 24.9935 24.9873

Standard Deviation 0.5132911238 0.088857001 0.040929039
Theorem 5.4.3 Prediction 25.0 25.0 25.0 25.0

Table 5.1: Data for n = 3; The percentage of primes p (that split completely in
K/Q) that exhibit the given ramified factorization in K(p)/Q.

` 104 105 106 107

11 4.49 4.746 4.6908 4.68969
31 4.70 4.649 4.6663 4.68322
41 4.36 4.586 4.6774 4.68479
61 4.39 4.613 4.6888
71 4.84 4.788 4.7014

101 4.67 4.623 4.7224
131 4.48 4.596 4.6806
151∗ 4.77 4.627 4.7143
181 4.96 4.770 4.6496
191 4.51 4.718 4.6580

Average 4.617 4.6716 4.68496
Median 4.59 4.638 4.6847

Standard Deviation 0.201221271 0.076200321 0.023530699
Theorem 5.4.3 Prediction 4.6875 4.6875 4.6875 4.6875

Table 5.2: Data for n = 5; The percentage of primes p (that split completely in
K/Q) that exhibit the given ramified factorization in K(p)/Q.
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` 104 105 106

43 1.91 2.176 2.1498
71 2.33 2.107 2.1501

127 2.2 2.091 2.1283
211 1.92 2.119 2.1736
281 2.11 2.204 2.1646
337 2.22 2.203 2.1509

Average 2.115 2.150 2.152883333
Median 2.155 2.1475 2.1505

Standard Deviation 0.170029409 0.050382537 0.015440132
Theorem 5.4.3 Prediction 2.1484375 2.1484375 2.1484375

Table 5.3: Data for n = 7; The percentage of primes p (that split completely in
K/Q) that exhibit the given ramified factorization in K(p)/Q.

5.4 A Density of Ramified Primes

Recall Definition 4.3.1;

S := {p ∈P2`
Q : fK/Q(p) = 1}, I := {p ∈P2`

Q : fK/Q(p) = n},

S ′ := {p ∈P2`
K : fK/Q(p) = 1}, I′ := {p ∈P2`

K : fK/Q(p) = n}.

Definition 5.4.1. Let K := K(n, `). Define

F := {p ∈ S : fK(p)/Q(p) = 1} and

F′ := {p ∈ S ′ : p lays above some p ∈ F}.

By Remark 5.1.4, an odd rational prime p which splits completely in K/Q fac-

tors in K(p)/Q with inertia degree 1 if and only if p splits completely in R(pσ)/K

for all non-trivial σ ∈ Gal(K/Q) where p is a prime of K above p. Therefore by

Lemma 5.2.1, we have the following equivalent definition of F.

Remark 5.4.2.

F = {p ∈ S : spin(p, σ) = 1 for all σ , 1 ∈ Gal(K/Q) where p ∈ S ′ lays above p}.

F′ = {p ∈ S ′ : spin(p, σ) = 1 for all σ , 1 ∈ Gal(K/Q)}.
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Theorem 5.4.3. Let K := K(n, `). Assume Conjecture 3.2.2 and Conjecture 5.3.2 (both

are true for n = 3). Also assume Conjecture 5.3.1.

Let K := K(n, `). Assume the narrow ray class group over K of conductor 2 is

trivial. Then

D := d(F|S ) =
mKn + 1

2n+ n−1
2

.

Proof. Recall the definition of R from Definition 4.5.1;

B := {p ∈P2`
Q : ?(p) = 1}

R := B ∩ S .

and note that ?(p) = 1 exactly when

spin(p, σ) = spin(p, σ−1) for all σ , 1 ∈ Gal(K/Q)

by Theorem 4.4.1 and Theorem 4.4.2.

Since by Remark 5.4.2,

F = {p ∈ S : spin(p, σ) = 1 for all σ , 1 ∈ Gal(K/Q) where p ∈ S ′ lays above p},

then

F ⊆ R.

Therefore assuming the limits exist,

d(F|S ) = d(F|R)d(R|S ). (5.1)

We know that

d(R|S ) =
1 + mKn

2n

by Theorem 4.5.2.
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It remains to show that

d(F|R) =

(
1
2

) n−1
2

.

Let R′ denote the set of primes of K laying above some p ∈ R = B ∩ S so that

R′ = {p ∈ S ′ : spin(p, σ) = spin(p, σ−1) for all σ , 1 ∈ Gal(K/Q)}.

Since we have assumed all primes in R split completely, the ns in the right-

hand limits below cancel so

d(F|R) = d(F′|R′).

By Remark 5.4.2,

F′ =
⋂
σ,1

σ∈Gal(K/Q)

Λσ ∩ S .

Fix a generator τ of Gal(K/Q). Define

H :=
{
τi : i = 1, ...,

n − 1
2

}
so that Gal(K/Q) is the disjoint union

Gal(K/Q) = {1} ∪ H ∪ {τ−1 : τ ∈ H}.

Let

Γσ := Λσ ∩ B

where Λσ is as defined on page 25. Then Γσ = Γσ−1 for all nontrivial σ ∈ Gal(K/Q)

so

F′ =
⋂
σ,1

σ∈Gal(K/Q)

Λσ ∩ S ′ =
⋂
σ∈H

Γσ ∩ S ′.
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Therefore applying Conjecture 5.3.2 (on asymptotic independence of spin)

gives

d(F|R) = d(F′|R′) =
∏
σ∈H

d(Γσ ∩ S ′|R′). (5.2)

Applying Conjecture 5.3.1 gives

d(Γσ ∩ S ′|R′) = d(Λσ ∩ S ′|S ′)

= d(Λσ ∩ Π|Π) by Theorem 3.3.2

=
1
2

by Corollary 3.3.3.

Therefore equation 5.2 implies

d(F|R) =
∏
σ∈H

1
2

=

(
1
2

) n−1
2

.

�
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APPENDIX A

A COMMUTATIVE ALGEBRA LEMMA

The followimg Lemma is used in the proof of surjectivity in Lemma 4.2.2.

Lemma A.0.1. Let X,Y,Z,W be finite abelian groups equipped with an action from a

finite abelian group G where W has odd order and suppose there is an exact sequence of

groups

1→ X → Y → Z → W → 1

where each group homomorphism respects the action from G. Then there is a short exact

sequence

1→ X[2∞]→ Y[2∞]→ Z[2∞]→ 1

on the 2-parts of these groups induced by the original homomorphisms.

Proof. Let X,Y,Z,W be finite abelian groups (assume #W is odd) equipped with

an action from a group G and suppose there is an exact sequence of groups

1→ X
f
→ Y

g
→ Z

h
→ W → 1

where each group homomorphism f , g, and h respects the action from G. We de-

note the operation additively. Consider the commutative diagram below where

the vertical maps are given by multiplication by 2N for N sufficiently large.

1 X Y Z W 1

1 X Y Z W 1

f1 g1 h1

f2 g2 h2

a b c d
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Let x ∈ ker(a). Then f2(a(x)) = f2(1) = 1 so commutativity of the diagram

shows that b( f1(x)) = 1. Therefore f1(x) ∈ ker(b) so f1 induces

ker(a)
f0
→ ker(b)

and injectivity of f0 follows from injectivity of f1.

Next let y ∈ ker(b). Then g2(b(y)) = g2(1) = 1 so commutativity of the diagram

shows that c(g1(y)) = 1 so g1(y) ∈ ker(c). Therefore g induces

ker(b)
g0
→ ker(c).

Let x ∈ ker(a). Then g0( f0(x)) = g1( f1(x)) = 1 by exactness so image( f0) ⊆

ker(g0). Let y ∈ ker(g0). Then y ∈ ker(b) ∩ ker(g1) so y ∈ ker(g1) = image( f1)

by exactness so y ∈ ker(b) ∩ image( f1). Then there exists some x ∈ X such that

f1(x) = y and b( f1(x)) = 1. Commutativity of the diagram implies f2(a(x)) =

1. Therefore a(x) = 1 by injectivity of f2 so x ∈ ker(a) proving y ∈ image( f0).

Therefore ker(g0) = image( f0).

To summarize, commutative algebra gives the following commutative dia-

gram of exact sequences.

1 1 1

1 ker(a) ker(b) ker(c)

1 X Y Z W 1

1 X Y Z W 1

g0

a b c d
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To show that g0 is surjective, we use the assumption that #W is odd and the

fact that the size of the kernel of multiplication by 2N for N sufficiently large is

the largest power of 2 dividing the order of the group. That is

# ker(a) = 2ord2(#X),

# ker(b) = 2ord2(#Y), and

# ker(c) = 2ord2(#Z).

Exactness implies #X#Z = #Y#W so

ord2(#X) + ord2(#Z) = ord2(#Y) + ord2(#W)

and ord2(#W) = 0 because #W is odd so

ord2(#X) + ord2(#Z) = ord2(#Y)

=⇒ # ker(a)# ker(c) = # ker(b).

We know that g0 induces an injective homomorphism

ker(b)/ ker(a)
g
→ ker(c).

Since the cardinalities match, g is an isomorphism so g0 is surjective. �
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APPENDIX B

COMPUTATIONS AND CODE

This appendix gives the code used to generate the values given in Table 4.1.

All programs are written for magma [2].

B.1 Number Field Hypotheses

function Kl(n,l);

/* return the (unique) nˆth degree/Q subfield of

the lth cyclotomic field where

l=1 mod 2n is prime */

assert Type(l) eq RngIntElt; //l is integer

assert IsPrime(l); //l is prime

assert l gt 0;

assert (l mod 2*n) eq (1 mod 2*n);

F:=CyclotomicField(l);

G:=GaloisGroup(F);

U:=sub<G|G.1ˆn>;

f:=GaloisSubgroup(F,U);

K:=NumberField(f);

return K;

end function;

function FProd(L);

/* return product L[i] for i:=1..#L where #L=#N*/

prod:=L[1];

i:=2;
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while i le #L do

prod:=prod*L[i];

i:=i+1;

end while;

return prod;

end function;

function PowerList(L);

/* return list of all sublists of the list L */

result:=[[]];

for x in L do

for sbst in result do

newsbst:=Append(sbst,x);

Append(˜result, newsbst);

end for;

end for;

return result;

end function;

function UmodSquares(K);

/* return a list of distinct representatives of units in K

mod squares excluding the class of squares */

G,phi:=UnitGroup(K);

U:=[K!phi(G.i): i in [1..Ngens(G)]];

PL:=PowerList(U);

Exclude(˜PL, []);

Ums:=[];

for L in PL do

Append(˜Ums, FProd(L));
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end for;

return Ums;

end function;

function UT2(K);

/* return true if the totally positive units in K are

exactly the square units and false otherwise.

K is a totally real number field.*/

// L = list of nontrivial elements of U/Uˆ2

L:=UmodSquares(K);

for u in L do

if IsTotallyPositive(u) then

return false;

end if;

end for;

return true;

end function;

function IsGalois(K);

/* return true if the numberfield K is Galois over Q */

return #GaloisGroup(K) eq Degree(K);

end function;

function Hyp(K);

SetClassGroupBounds("GRH");

n:=Degree(K);

OK:=MaximalOrder(K);

if not (n gt 2) then

return <false, "K must have degree at least 3." >;
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elif not IsTotallyReal(K) then

return <false, "K must be totally real." >;

elif not (IsPrime(n)) then

return <false, "K must have prime degree." >;

elif not (IsGalois(K)) then

return <false, "K must be Galois over the rationals." >;

elif not UT2(K) then

return <false, "K must have U_T=Uˆ2.

Equivalently, the narrow and wide Hilbert class fields

of K must coincide." >;

elif not ClassNumber(K) mod 2 eq 1 then

return <false, "K must have odd class number.">;

elif not (Order(RayClassGroup(2*OK,[1..n])) mod 2 eq 1) then

return <false, "2 can not divide the order of the

narrow ray class group over K of conductor 2.

(narrow:= all infinite places divide the conductor.)">;

elif not IsInert(2*OK) then

return <false, "2 must be inert in K/Q." >;

elif not IsInert(5*OK) then

return <false, "5 must be inert in K/Q." >;

end if;

return <true, ":)">;

end function;

function HypBool(K);

return Hyp(K)[1];

end function;

function HypReason(K);
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return Hyp(K)[2];

end function;

B.2 Computing the Starlight Invariant

function IsGenGal(sigma,K);

/* Assumes the extension K/Q is Galois.

return value is true iff sigma is a generator of Gal(K/Q). */

G:=Automorphisms(K);

n:=#G;

//assert K/Q is Galois. (Then G is the Galois group.)

assert n eq Degree(K);

Divs:=Divisors(n);

B:=true;

for d in Divs do

if (sigmaˆd)(K.1) eq K.1 then

if not d eq n then

return false;

end if;

end if;

end for;

return true;

end function;

function S(n,L);

/* return the list of all (lists of size n with entries in L).

n is a positive integer.

Helper function for finding square units mod 4. */
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if n eq 1 then

SS:=[];

for i in L do

Append(˜SS,[i]);

end for;

return SS;

elif n gt 1 then

SS:=[];

Sprev:=S(n-1,L);

for s in Sprev do

for i in L do

Append(˜SS, Append(s,i));

end for;

end for;

return SS;

else

return "error: n must be a positive integer.";

end if;

end function;

function Starlight(K);

/* return the number of orbits of non-trivial size

of the action of G:=Gal(K/Q) on M_K such that

Star(alpha) is true for some representative alpha

of the orbit (equiv for all alpha) where

M_K:=((OK/4)ˆx)/squares for OK:=MaximalOrder(K) and

Star(alpha) is true iff

HilbertSymbol(alpha,alphaˆsigma,2*OK)=1

for all non-triv sigma in G
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(equiv for all non-triv sigma in H:={tauˆi}

for i=1..(n-1)/2 where tau generates G). */

n:=Degree(K);

OK:=MaximalOrder(K);

U,ugp:=UnitGroup(K);

Umsq,msq:=quo<U|2*U>;

yinv:=Inverse(ugp)*msq;

y:=Inverse(yinv);

OK4,m4:=quo<OK|4*OK>;

U4,ugp4:=UnitGroup(OK4);

MK,msq4:=quo<U4|2*U4>;

x:=m4*Inverse(ugp4)*msq4;

xinv:=Inverse(x);

// Phi: Umsq -> MK is the natural map where

// Umsq=U/Uˆ2 and MK=((OK/4)ˆx)/squares

Phi:=y*x;

//Find tau, a generator of G:=Gal(K/Q)

GalGen1:=[];

assert IsGalois(K);

while #GalGen1 lt 1 do

for i in [1..n] do

sig:=Automorphisms(K)[i];

if IsGenGal(sig, K) then

Append(˜GalGen1,sig);

end if;

end for;

end while;
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tau:=GalGen1[1];

d:=Integers()!((n-1)/2);

H:=[(tauˆk): k in [1..d]];

Galnontriv:=[(tauˆk): k in [1..n-1]];

// G-orbits of MK st. star is true.

StarPos:=[];

// G-orbits of MK st. star is false.

StarNeg:=[];

// G-orbits that have been checked.

DONEORBITS:=[];

//Indices of UmsqK and UmsqMK correspond via natural map Phi

//initialize list of reps of Umsq:=U/U2 as elements of K.

UmsqK:=[];

//initialize list of reps of Umsq:=U/U2 as elements of OK.

UmsqOK:=[];

//initialize list of reps of Umsq:=U/U2 as elements of MK.

UmsqMK:=[];

//Param parametrizes elements of Umsq:=U/U2.

Param:=S(n,[0,1]);

for s in Param do

u:=(s[1])*(Umsq.1);

for i in [2..n] do

u:=u+((s[i])*(Umsq.(i)));

end for;

// u: an element of Umsq (˜s in S(n,[0,1]))
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// u is expressed in terms of gens of Usq

Append(˜UmsqK,K!y(u));

Append(˜UmsqOK,y(u));

Append(˜UmsqMK,Phi(u));

end for;

// Each tuple in InfoRep corresponds to a representative of U/Uˆ2.

// tuple[1] in K, tuple[2] in OK, tuple[3] in MK

// (using the natural map, Phi).

InfoRep:=[];

for i in [1..2ˆn] do

Append(˜InfoRep, <UmsqK[i],UmsqOK[i],UmsqMK[i]>);

end for;

Orbits:=[];

MKDONE:=[];

for i in [1..2ˆn] do

inforep:=InfoRep[i];

orbMK:=[inforep];

for j in [1..n-1] do

prev:= orbMK[#orbMK];

uK:=prev[1];

uOK:=prev[2];

uMK:=prev[3];

for k in [1..2ˆn] do

inforepTESTER:=InfoRep[k];

if x(tau(prev[1])) eq x(inforepTESTER[1]) then

Append(˜orbMK,inforepTESTER);

end if;
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end for;

end for;

Append(˜Orbits,Set(orbMK));

end for;

for orb in Orbits do

orbreps:=[inforep[1]:inforep in orb];

//alpha is a representative (tuple) of the orbit orb.

alpha:=orbreps[1];

star:=true;

for sig in H do

a:=alpha;

b:=sig(alpha);

if not HilbertSymbol(a,b,2*OK) eq 1 then

star:=false;

end if;

end for;

if star then

Append(˜StarPos,orb);

else

Append(˜StarNeg,orb);

end if;

end for;

StarPos:=Set(StarPos);

StarNeg:=Set(StarNeg);

// 2*(b+1) = # orbits of G acting on MK

b:=Integers()!((2ˆ(n-1)-1)/n);
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return #StarPos-1;

end function;

B.3 Automated Examples

KnlSamples:=[[3,7],[5,11],[7,43],[11,23],[13,53],[17,103],[19,191]];

function HypExamples(:info:=true);

/* check each example number field for the necessary hypotheses */

MissingHyp:=[];

for Knl in KnlSamples do

n:=Knl[1];

l:=Knl[2];

K:=Kl(n,l);

if info then

print "[K:Q] = ",n, " conductor = ",l;

end if;

if not HypBool(K) then

Append(˜MissingHyp,[n,l]);

if info then

print "missing hypothesis: ", HypReason(K);

end if;

else

if info then

print "all hypotheses satisfied";

end if;

end if;
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if info then

print "-----------------------------";

end if;

end for;

return MissingHyp;

end function;

function StarlightExamples(:info:=true, samples:=KnlSamples);

/* return a list L=[n,l,mK,d1,d2], each entry of L corresponding to

a numberfield K where

<n,l> gives the absolute degree and conductor of K respectively,

mK:=Starlight(K) is the Starlight invariant,

d1 is the restricted density (coming from Theorem 4.5.2)

of rational primes p that satisfy the spin relation

spin(pp,sigma)=spin(pp,sigmaˆ{-1}) for all sigma in the

Galois group of K/Q where pp any prime in K above p,

d2 is the (unrestricted) density of rational primes satisfying

the same spin relation.

Input is a list of [n,l] specifying the degrees and conductors

respectively of number fields satisfying the necessary hypotheses.

If optional parameter info=true (true by default) then information

is printed in real time. */

L:=[];

for Knl in samples do

n:=Knl[1];

l:=Knl[2];
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K:=Kl(n,l);

mK:=Starlight(K);

d1:= (1 + mK*n)/(2ˆn);

d2:= (1/(2*n)) + ((n-1)/n)*d1;

Append(˜L,[n,l,mK,d1,d2]);

if info then

print "[K:Q] = ",n, " conductor = ",l;

print "Starlight invariant m_K = ",mK;

print "restricted density of spin relation = ",d1;

print "density of spin relation = ",d2;

print "--------------------------------";

end if;

end for;

return L;

end function;
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NOTATION AND TERMINOLOGY

M4 The multiplicative group with Gal(K/Q)-action,

(
OK�4

)×
/
((
OK�4

)×)2

. viii, 30–33, 39, 40, 42–46, 48, 52, 53, 84, 85

K(p) See Definition 5.1.1. xi, 50, 54–56, 60, 62

narrow We call a modulus narrow when all real infinite places of the base field

divide the modulus. We call a ray class group or field narrow when the

conductor is narrow . 3, 5, 6, 13, 14, 37, 82

wide We call a modulus wide when no real infinite places of the base field divide

the modulus. We call a ray class group or field wide when the conductor is

wide. 6, 13

nClmK the narrow ray class group over K of conductor m (Definition 1.1.1) . 6, 10

decomposition group See Definition 1.2.1 . 8

inertia group See Definition 1.2.1 . 8

ramification index See Definition 1.2.2 . 8

inertia degree See Definition 1.2.2 . 8, 46

Frobenius element See Definition 1.2.3 . 9

FrobL/K(p) See the remarks following Definition 1.2.3 . 9, 10

JmK the group of fractional ideals of K generated by the primes of K that are co-

prime to m0, the finite part of m where m is a (narrow) modulus of K. . 9,

10, 82, 83

PmK the subgroup of JmK generated by primes of K which have a generator α � 0

such that α ≡∗ 1 mod m. . 9–11, 83
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Artin map See the beginning of Section 1.3 . 10

conductor see Definition 1.3.2. 10

congruence subgroup a congruence subgroup modulo m is a subgroup of JmK

containing PmK . 10

narrow ray class field see Definition 1.3.4 . 11

nRmK see Definition 1.3.4 . 11

density see Definition 1.4.1 . 11, 46, 83, 85

d(R|S ) the density of primes p ∈ S which lay in R ⊆ S . 11

RayL|K(σ) the set of primes p of K unramified in L/K, a finite abelian extension,

such that ArtL|K(p) = σ. 12

UT The totally positive units of a number field. 13, 14, 16, 19, 20, 30, 50, 83

U2 The square units of a number field. 13, 14, 16, 19, 20, 30, 50, 83

h(K) The class number of the number field K. 14, 16, 27, 30, 33, 41, 83

K(n, `) a number field of degree n over Q and conductor ` that satisfies all of the

following conditions.

∗ K is totally real.

∗ n is odd.

∗ UT = U2.

∗ K is Galois over Q with cyclic Galois group.

∗ The class number h(K) is odd.

∗ 2 is inert in K/Q.

. 16, 20, 21, 24, 25, 27, 30, 33, 34, 36–39, 41, 42, 44–46, 48, 50, 52, 54, 56–59,

62, 63
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vK a map from the narrow ray class group of conductor 4 over K to the units of

K modulo squares; the map is defined on prime ideals . 19, 27, 28, 41, 58

ϕ a canonical surjective homomorphism from nCl4 to M4 (see Theorem 4.2.2) .

19, 34, 36, 39

Mq The multiplicative group with Gal(K/Q)-action,

(
OK�q

)×
/
((
OK�q

)×)2

where q is a power of 2. 19, 31, 33–35, 39, 84

spin see Definition 3.1.1 . 20

S ′ The set of p ∈P2`
K such that p lays above some p ∈ S . 25, 26, 38, 46, 54, 57, 58,

62–64

M8 The multiplicative group with Gal(K/Q)-action,

(
OK�8

)×
/
((
OK�8

)×)2

. 31, 39

Mq,G The quotient of Mq by the action from Gal(K/Q). 33, 34

r0 see Definition 4.2.1 . 34, 47, 49

S The set of odd rational primes which split completely in K/Q. 38, 46, 49–52,

54–56, 59, 60, 62–64, 84, 85

I The set of odd rational primes which are inert in K/Q. 38, 46, 49, 54, 55, 62, 84

I′ The set of p ∈P2`
K such that p lays above some p ∈ I. 38, 46, 54, 62

M4,G The quotient of M4 by the action from Gal(K/Q). 42, 45, 47, 84

? a boolean associated to elements of M4,G. See Definition 4.4.2. If in reference

to a rational prime, also see Definition 4.2.1. 42–47, 49, 52, 53, 59, 63

84



Starlight invariant see mK . 45

mK the Starlight invariant; an invariant of the number field K defined to be the

number of non-trivial Gal(K/Q)-orbits of M4 with representative α ∈ OK

such that the product of Hilbert symbols v|2(α, ασ) = 1 for all non-trivial

σ ∈ Gal(K/Q). . 45–52, 63, 85

r see Definition 4.2.1 . 45

B The set of p ∈ S such that ?(p) = 1 where ? is the map defined in 4.4.6. 46, 48,

49, 59, 60, 63, 64, 85

R the set of p ∈ S such that ?(p) = 1 where ? is the map defined in 4.4.6, (R was

previously denoted B). 46, 50–52, 59, 63, 64, 85

dK = d(R|S ) the density of primes p ∈ S which lay in R. 46

F The set of p ∈ S such that the inertia degree of p in K(p)/Q equals 1. 60, 62–64,

85

∗ denotes a case that is missing the assumption that 2 is inert or the assumption

that 5 is inert in Tables 5.1, 5.2, and 5.3 . 60, 61

F′ The set of p ∈ S ′ such that p lays above some p ∈ F.. 62, 64

d(F|S ) the density of primes p ∈ S which lay in F ⊆ S . 63
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